Estimation of the Rebound Effect for Travel Distance Using Micro-level Data for France

Catherine Benjamin
catherine.benjamin@univ-rennes1.fr

Alejandra Giraldo
deici.giraldo@univ-rennes1.fr

Quatrième Conférence Évaluation des politiques publiques - AFSE Paris - 13 December 2018

How to cut driving emissions?

- The share of global energy-related GHG emissions due to transportation is 23% (EEA, 2017).
- In France, it is $28,5 \%$ of which $53,7 \%$ are due to private vehicles (Pourquier and Vicard, 2017).

How to cut driving emissions?

- The share of global energy-related GHG emissions due to transportation is 23% (EEA, 2017).
- In France, it is $28,5 \%$ of which $53,7 \%$ are due to private vehicles (Pourquier and Vicard, 2017).
- Efficiency policies are widely used as a way to reduce greenhouse gas emissions.
- More efficiency usually means a fall in the real cost of unit energy service, e.g. driving.
- A lower real cost of driving creates incentives to drive more.

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.
- A rebound effect implies that the benefits from rising efficiency are lower than expected.

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.
- A rebound effect implies that the benefits from rising efficiency are lower than expected.
- Three types of rebound effect (Sorrell and Dimitropoulos, 2008):

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.
- A rebound effect implies that the benefits from rising efficiency are lower than expected.
- Three types of rebound effect (Sorrell and Dimitropoulos, 2008):
- Direct rebound effect
- Indirect rebound effect
- Economy-wide rebound effect

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.
- A rebound effect implies that the benefits from rising efficiency are lower than expected.
- Three types of rebound effect (Sorrell and Dimitropoulos, 2008):
- Direct rebound effect
- Indirect rebound effect
- Economy-wide rebound effect

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.
- A rebound effect implies that the benefits from rising efficiency are lower than expected.

■ The direct rebound effect is defined as:

The rebound effect

- The increase in demand for energy services following an improvement of energy efficiency is known as the rebound effect.
- A rebound effect implies that the benefits from rising efficiency are lower than expected.

■ The direct rebound effect is defined as:

- The efficiency elasticity of demand for driving (VKT)

Key findings

- Most studies focus on the U.S., using panel data at a state level. Only few use micro-level data.
- Estimates range from 5% (Greene, 1992) to 40% (Linn, 2016) for the US. At the European level, they go from 9\% (Stapleton et al., 2016) to 70\% (Frondel and Vance, 2013).
- Some assumptions widely used in the literature can be potential sources of bias in estimations (Gillingham et al., 2016; Sorrell and Dimitropoulos, 2008).

Estimating the direct rebound effect in France

- We use the primary definition of the direct rebound effect: The efficiency elasticity of demand for driving (VKT) and account for three main sources of bias.
- We use micro-level data in France for 2008 and improve the methodology in Linn (2016) by controlling for selection bias.
- Our rich database allows us to account for household heterogeneity and vehicle characteristics, thus enhancing the rebound effect estimates.

Data

- The main data-set comes from the 2007-2008 National Transport and Travel Survey (NTTS) for France

Data

- The main data-set comes from the 2007-2008 National Transport and Travel Survey (NTTS) for France

■ It gives detailed information for 20.200 households' mobility

Data

- The main data-set comes from the 2007-2008 National Transport and Travel Survey (NTTS) for France

■ It gives detailed information for 20.200 households' mobility

- The dependent variable, VKT, measures the travel distance during a reference week for one vehicle

Data

- The main data-set comes from the 2007-2008 National Transport and Travel Survey (NTTS) for France
- It gives detailed information for 20.200 households' mobility
- The dependent variable, VKT, measures the travel distance during a reference week for one vehicle
- Fuel economy, E, is the inverse on-road fuel intensity per 100 km

Data

- The main data-set comes from the 2007-2008 National Transport and Travel Survey (NTTS) for France
- It gives detailed information for 20.200 households' mobility
- The dependent variable, VKT, measures the travel distance during a reference week for one vehicle
- Fuel economy, E, is the inverse on-road fuel intensity per 100 km

■ Fuel economy is available for one or two households vehicles

Model structure

$$
\ln \left(V K T_{h i}\right)=\beta_{0}^{v k t}+\beta_{1}^{v k t} \ln \left(P_{f}\right)+\beta_{2}^{v k t} \ln \left(E_{h i}\right)+\beta_{3}^{v k t} \ln \left(E_{h j}\right)+X_{h}+\epsilon_{h i}
$$

Model structure

$$
\overbrace{\ln \left(V K T_{h i}\right)}^{\text {Distance }}=\beta_{0}^{v k t}+\beta_{1}^{v k t} \ln \left(P_{f}\right)+\beta_{2}^{v k t} \ln \left(E_{h i}\right)+\beta_{3}^{v k t} \ln \left(E_{h j}\right)+X_{h}+\epsilon_{h i}
$$

Model structure

- Separate coefficients for fuel prices and fuel economy to allow for asymmetrical responses of demand.

Model structure

$$
\begin{aligned}
\overbrace{\ln \left(V K T_{h i}\right)}^{\text {Distance }} & =\beta_{0}^{v k t}+\overbrace{\beta_{1}^{v k t} \ln \left(P_{f}\right)}^{\text {Fuel price }}+\overbrace{\beta_{2}^{v k t} \ln \left(E_{h i}\right)+\beta_{3}^{v k t} \ln \left(E_{h j}\right)}^{\text {Fuel economy }}+X_{h}+\epsilon_{h i} \\
\ln \left(E_{h i}\right) & =\beta_{0}^{f e i}+\beta_{1}^{f e i} \ln \left(V K T_{h i}\right)+\beta_{2}^{f e i} \ln \left(\bar{P}_{f}\right)+X_{h}+\epsilon_{h i} \\
\ln \left(E_{h j}\right) & =\beta_{0}^{f e j}+\beta_{1}^{f e j} \ln \left(V K T_{h i}\right)+\beta_{2}^{f e j} \ln \left(\hat{P}_{f}\right)+X_{h}+\epsilon_{h i}
\end{aligned}
$$

- Separate coefficients for fuel prices and fuel economy to allow for asymmetrical responses of demand.
- A system in which VKT and fuel efficiency are simultaneously determined to address endogeneity. The estimation technique is 3SLS.

Model structure

- Separate coefficients for fuel prices and fuel economy to allow for asymmetrical responses of demand.
- A system in which VKT and fuel efficiency are simultaneously determined to address endogeneity. The estimation technique is 3SLS.
■ Correction of selection bias in presence of endogenous explanatory variables(Wooldridge, 2010).

Model structure

$$
\begin{aligned}
\ln \left(V K T_{h i}\right) & =\beta_{0}^{v k t}+\beta_{1}^{v k t} \ln \left(P_{f}\right)+\overbrace{\beta_{2}^{v k t} \ln \left(E_{h i}\right)+\beta_{3}^{v k t} \ln \left(E_{h j}\right)}^{\text {Fuel economy }}+X_{h}+\epsilon_{h i} \\
\ln \left(E_{h i}\right) & =\beta_{0}^{f e i}+\beta_{1}^{f e i} \ln \left(V K T_{h i}\right)+\beta_{2}^{f e i} \ln \left(\bar{P}_{f}\right)+X_{h}+\epsilon_{h i} \\
\ln \left(E_{h j}\right) & =\beta_{0}^{f e j}+\beta_{1}^{f e j} \ln \left(V K T_{h i}\right)+\beta_{2}^{f e j} \ln \left(\hat{P}_{f}\right)+X_{h}+\epsilon_{h i}
\end{aligned}
$$

- The rebound effect takes into account variation in fuel economy of all vehicles in the household :

$$
\eta_{E}(V K T)=\beta_{2}^{v k t}+\beta_{3}^{v k t} \times 40 \%
$$

3SLS estimates of main variables

	$V T K_{i}$		E_{i}	E_{j}		
$V T K_{i}$			0.00403	(0.003)	0.00958	(0.006)
E_{i}	$0.321^{* * *}$	(0.045)				
E_{j}	-0.0445**	(0.014)				
Rebound Effect	$0.305^{* * *}$	(5.74)				
P_{f}	$-0.464^{* * *}$	(0.085)				
Monthly Income	0.110***	(0.022)	0.00568	(0.004)		
Interaction prices and income:	P_{f}		\bar{P}_{f}		\hat{P}_{f}	
Q2	0.0560	(0.053)				
Q3	0.136*	(0.063)				
Q4	0.296***	(0.070)				
Interaction No of vehicles:			$V e h_{i}$		$V e h_{j}$	
Log vehicle age - 0			-0.0336***	(0.002)		
Log vehicle age - 1			-0.00457	(0.007)	0.0312*	(0.015)
Log vehicle weight - 0			$-0.100^{* * *}$	(0.022)		
Log vehicle weight - 1			$0.0270^{* * *}$	(0.004)	$0.174^{* * *}$	0.009)
Log horsepower - 0			-0.375***	(0.018)		
Log horsepower - 1			-0.0272	(0.019)	0.429***	(0.023)
Inverse Mill's Ratio	0.136***	(0.012)			$-0.0311^{* *}$	(0.012)
Observations	4698					
R^{2}	0.616		0.439		0.805	
A. Giraldo	Rebound	Effect for Traver	Travel Distance		AFSE 2	88

3SLS estimates of main variables

	$V T K_{i}$		E_{i}	E_{j}		
$V T K_{i}$			0.00403	(0.003)	0.00958	(0.006)
E_{i}	0.321***	(0.045)				
E_{j}	-0.0445**	(0.014)				
Rebound Effect	0.305***	(5.74)				
P_{f}	$-0.464^{* * *}$	(0.085)				
Monthly Income	0.110***	(0.022)	0.00568	(0.004)		
Interaction prices and income:	P_{f}		\bar{P}_{f}		\hat{P}_{f}	
Q2	0.0560	(0.053)				
Q3	0.136*	(0.063)				
Q4	0.296***	(0.070)				
Interaction No of vehicles:			$V e h_{i}$		$V e h_{j}$	
Log vehicle age - 0			-0.0336***	(0.002)		
Log vehicle age - 1			-0.00457	(0.007)	0.0312^{*}	(0.015)
Log vehicle weight - 0			-0.100***	(0.022)		
Log vehicle weight - 1			0.0270***	(0.004)	$0.174^{* * *}$	0.009)
Log horsepower - 0			-0.375***	(0.018)		
Log horsepower - 1			-0.0272	(0.019)	0.429***	(0.023)
Inverse Mill's Ratio	0.136***	(0.012)			$-0.0311^{* *}$	(0.012)
Observations	4698					
R^{2}	0.616		0.439		0.805	

3SLS estimates of main variables

3SLS estimates of main variables

	$V T K_{i}$		E_{i}	E_{j}		
$V T K_{i}$			0.00403	(0.003)	0.00958	(0.006)
E_{i}	$0.321^{* * *}$	(0.045)				
E_{j}	-0.0445**	(0.014)				
Rebound Effect	0.305***	(5.74)				
P_{f}	$-0.464^{* * *}$	(0.085)				
Monthly Income	0.110***	(0.022)	0.00568	(0.004)		
Interaction prices and income:	P_{f}		\bar{P}_{f}		\hat{P}_{f}	
Q2	0.0560	(0.053)				
Q3	0.136*	(0.063)				
Q4	0.296***	(0.070)				
Interaction No of vehicles:			$V e h_{i}$		$V e h_{j}$	
Log vehicle age - 0			-0.0336***	(0.002)		
Log vehicle age - 1			-0.00457	(0.007)	0.0312*	(0.015)
Log vehicle weight - 0			$-0.100^{* * *}$	(0.022)		
Log vehicle weight - 1			$0.0270^{* * *}$	(0.004)	$0.174^{* * *}$	0.009)
Log horsepower - 0			-0.375***	(0.018)		
Log horsepower - 1			-0.0272	(0.019)	0.429***	(0.023)
Inverse Mill's Ratio	0.136***	(0.012)			$-0.0311^{* *}$	(0.012)
Observations	4698					
R^{2}	0.616		0.439		0.805	
A. Giraldo	Rebound	ffect for	Travel Distance		AFSE 2	88

3SLS estimates of main variables

	$V T K_{i}$		E_{i}	E_{j}		
$V T K_{i}$			0.00403	(0.003)	0.00958	(0.006)
E_{i}	$0.321^{* * *}$	(0.045)				
E_{j}	-0.0445**	(0.014)				
Rebound Effect	0.305***	(5.74)				
P_{f}	-0.464***	(0.085)				
Monthly Income	0.110***	(0.022)	0.00568	(0.004)		
Interaction prices and income:	P_{f}		\bar{P}_{f}		\hat{P}_{f}	
Q2	0.0560	(0.053)				
Q3	0.136*	(0.063)				
Q4	0.296***	(0.070)				
Interaction No of vehicles:			$V e h_{i}$		$V e h_{j}$	
Log vehicle age - 0			-0.0336***	(0.002)		
Log vehicle age - 1			-0.00457	(0.007)	0.0312*	(0.015)
Log vehicle weight - 0			-0.100***	(0.022)		
Log vehicle weight - 1			0.0270***	(0.004)	$0.174^{* * *}$	0.009)
Log horsepower - 0			-0.375***	(0.018)		
Log horsepower - 1			-0.0272	(0.019)	$0.429^{* * *}$	(0.023)
Inverse Mill's Ratio	0.136***	(0.012)			$-0.0311^{* *}$	(0.012)
Observations	4698					
R^{2}	0.616		0.439		0.805	

3SLS estimates of main variables

	$V T K_{i}$		E_{i}	E_{j}		
$V T K_{i}$			0.00403	(0.003)	0.00958	(0.006)
E_{i}	$0.321^{* * *}$	(0.045)				
E_{j}	-0.0445**	(0.014)				
Rebound Effect	0.305***	(5.74)				
P_{f}	$-0.464^{* * *}$	(0.085)				
Monthly Income	0.110***	(0.022)	0.00568	(0.004)		
Interaction prices and income:	P_{f}		\bar{P}_{f}		\hat{P}_{f}	
Q2	0.0560	(0.053)				
Q3	0.136*	(0.063)				
Q4	0.296***	(0.070)				
Interaction No of vehicles:			$V e h_{i}$		$V e h_{j}$	
Log vehicle age - 0			-0.0336***	(0.002)		
Log vehicle age - 1			-0.00457	(0.007)	0.0312*	(0.015)
Log vehicle weight - 0			-0.100***	(0.022)		
Log vehicle weight - 1			0.0270***	(0.004)	$0.174^{* * *}$	0.009)
Log horsepower - 0			-0.375***	(0.018)		
Log horsepower - 1			-0.0272	(0.019)	0.429***	(0.023)
Inverse Mill's Ratio	0.136***	(0.012)			$-0.0311^{* *}$	(0.012)
Observations	4698					
R^{2}	0.616		0.439		0.805	
A. Giraldo	Rebound	Effect for	Travel Distance		AFSE 201	88

3SLS estimates of main variables

	$V T K_{i}$		E_{i}		E_{j}	
$V T K_{i}$			0.00403	(0.003)	0.00958	(0.006)
E_{i}	0.321***	(0.045)				
E_{j}	-0.0445**	(0.014)				
Rebound Effect	0.305***	(5.74)				
P_{f}	-0.464***	(0.085)				
Monthly Income	0.110***	(0.022)	0.00568	(0.004)		
Interaction prices and income:	P_{f}		\bar{P}_{f}		\hat{P}_{f}	
Q2	0.0560	(0.053)				
Q3	0.136*	(0.063)				
Q4	0.296***	(0.070)				
Interaction No of vehicles:			$V e h_{i}$		$V e h_{j}$	
Log vehicle age - 0			-0.0336***	(0.002)		
Log vehicle age - 1			-0.00457	(0.007)	0.0312*	(0.015)
Log vehicle weight - 0			-0.100***	(0.022)		
Log vehicle weight - 1			0.0270***	(0.004)	0.174***	0.009)
Log horsepower - 0			-0.375***	(0.018)		
Log horsepower - 1			-0.0272	(0.019)	0.429***	(0.023)
Inverse Mill's Ratio	$0.136^{* * *}$	(0.012)			$-0.0311^{* *}$	(0.012)
Observations	4698					
R^{2}	0.616		0.439		0.805	

Conclusions

- We find that almost one third of fuel savings following an efficiency improvement are lost due to the direct rebound effect.
- We provide further evidence on endogeneity of fuel economy and interdependence of travel distance among vehicles in multivehicle households. Moreover, our model does not support the symmetry assumption.
- Reducing carbon emissions require the combination of energy efficiency improvements with other policies (e.g. taxes, behavioral).
- We will use this model in order to simulate three different policies shocks: prices, fuel economy and income.

Thank you

Estimation of the Rebound Effect for Travel Distance Using Micro-level Data for France

Catherine Benjamin
catherine.benjamin@univ-rennes1.fr

Alejandra Giraldo
deici.giraldo@univ-rennes1.fr

