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Observational Methods are unreliable

◮ Reliable Observational
Methods would enable
causal inference at a low
cost

◮ Problem: Observational
Methods are unreliable
because their bias is
unknown

◮ The bias of RCTs is much
better known
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Making Observational Methods reliable

Characterizing the distribution of the bias of Observational
Methods would make them more reliable

◮ Correct confidence intervals including uncertainty about bias

◮ Choice of method ex ante



My proposal: combining 3 steps

1. Derive general properties using stylized theoretical models

2. Derive quantitative properties using simulations of calibrated
models

3. Estimate the bias of Observational Methods from real data



An example: DID Matching and JTPs

◮ DID Matching emerges as least biased method when
compared with RCTs

◮ Intuitive explanation: DID captures fixed effects, Matching
captures transitory shocks



Why does DID Matching work?

1. Theoretical results
◮ Intuitive story is wrong
◮ Fallacy of alignment bias
◮ Symmetric DID undoes time varying selection bias

2. Simulations
◮ Fallacy of alignment bias is sizable
◮ Symmetric DID resists to failure of symmetry

3. Empirical results confirm predictions
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◮ Overall Approach: Chabé-Ferret (2015), Hill (2008), Eckles
and Bakshy (2017)

◮ Theory: Heckman (1978), Nickell (1981), Heckman and Robb
(1985)

◮ Simulations: Heckman, LaLonde, and Smith (1999), Huber,
Lechner, and Wunsch (2013), Hatfield and Daw (2018)

◮ Empirics:
◮ Within Study Comparisons: LaLonde (1986), Fraker and

Maynard (1987), Glazerman et al (2003), Wong et al (2017),
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The model

Y 0
i ,t = δt + µi + Uit

with Ui ,t = ρUi ,t−1 + vi ,t

D∗

i ,k = θi + γY 0
i ,k−1 + γf vi ,k

Di ,t = 1 [t ≥ k]1
[
D∗

i ,k ≥ 0
]

E
[
Y 0
i ,t |D

∗

i ,k ,Yi ,k−1

]
linear

Corr(µi , θi ) = ρθ,µ

◮ Both permanent (when
ρθ,µ 6= 0) and transitory
(when γ 6= 0 and ρ 6= 0)
confounders

◮ Both limited (when γf = 0)
and full (when γf = γ

ρ
)

information

◮ Both self-selection in a JTP
and eligibility criteria



The estimators and their asymptotic biases
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Conditions for consistency

Definition (Consistency)

An estimator Ek,τ,τ ′ is consistent ⇔ B(Ek,τ,τ ′) = 0,

◮ ∀k ≥ 3

◮ ∀τ ≥ 1

◮ For τ ′ ∈ [2 . . .max{2, k − 1}] with either:
◮ ∀τ ′

◮ For τ ′ = f (τ)



Main theoretical result

Theorem (Consistency of M, DID and DIDM)

∀k ≥ 3, ∀τ ≥ 1, for τ ′ ∈ [2 . . .max{2, k − 1}],

(i) B(Mk,τ,1) = 0 ⇔ ρθ,µ = γf = 0 or ρθ,µ = ρ = 0.

(ii) B(DIDk,τ,τ ′) = 0 ⇔






ρ = 0 or γ = γf = 0

or

σ2
U0

= σ2

1−ρ2
and τ ′ = τ + 1 + ln ρ̄

ln ρ , with ρ̄ = ρ+ γf

γ
(1− ρ2).

(iii) B(DIDMk,τ,1,τ ′) = 0 ⇔






ρθ,µ = γf = 0 or ρ = 0

or

σ2
U0

= σ2

1−ρ2
and τ ′ = τ + 1 + ln ρ∗

ln ρ , with ρ∗ = ρ− γf σ2
σ2

1−ρ2
+σ2

µ

ρσµa
σ2

1−ρ2

.

Matching Proof DID Proof DID Matching Proof



Illustration
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(a) ρθ,µ = γ
f = 0
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(b) γ = γ
f = ρ = 0
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(c) ρθ,µ, ρ, γ 6= 0, γf = 0
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(d) ρ 6= 0, γ = γ
f = 0
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(e) ρθ,µ, ρ, γ 6= 0, γf = γ

ρ
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The model

Y 0
i ,t = a+ b

18 + t

10
+ c

(
18 + t

10

)2

+ (δ + rtd)Ei + µi + βi t + Uit

with Ui ,t = ρUi ,t−1 +m1vi ,t−1 +m2vi ,t−2 + vi ,t

D∗ι
i ,k =

αi

r
− ci ,k − E

[
Y 0
i ,k |I

ι
i ,k

]

with ci ,k = ci + βxEi −

(

a+ b
18 + k

10
+ c

(
18 + k

10

)2

+ (δ + rkd)Ei

)

◮ ι = f : full information

◮ ι = l : limited information

◮ ι = b: Bayesian updating



Parameterization

RIP HIP
(MaCurdy, 1982) (Guvenen, 2007, 2009)

ρ 0.99 0.821
m1 -0.4 0
m2 -0.1 0
σ2 0.055 0.055
σ2
µ 0 0.022

σ2
β 0 0.00038

σµ,β 0 -0.002



Results: RIP

(a) Full Info, Long Run (b) Limited Info, Long Run

(c) Full Info, Short Run (d) Limited Info, Short
Run



Results: HIP

(a) Full Info, Long Run (b) Bayes, Long Run

(c) Full Info, Short Run (d) Bayes, Short Run
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Evidence on the bias of observational methods

◮ Within Study Comparisons

◮ Between Study Comparisons

◮ Within Study Sensitivity Analysis



Results of Within Study Comparisons for JTPs
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Meta-analysis of Within Study Comparisons for JTPs

Glazerman, Levy, and Myers (2003)



Between Study Analysis of JTPs (Example)

Card, Kluve, and Weber (2015)
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Conclusions so far

◮ The proposed approach seems to work

◮ Combining DID and Matching on pre-treatment outcomes is
not a great idea



To do for this paper

◮ Simulations with levels

◮ Re-analyze JTPA data

◮ Nickell bias?



Further research

1. Bias of OM for JTPs
◮ One prediction to be tested: controlling for more pre-treatment

outcomes could make things better
◮ Two empirical results to explain

◮ Conditioning for labor market transitions improves matching
◮ The bias of observational methods increases with time after

treatment

2. Bias of OM in other applications
◮ Collect more estimates of bias

◮ Within Study Comparisons using RCTs with imperfect
compliance (Chabé-Ferret et al, 2018)

◮ Test validity of pseudo-experiments

◮ Develop simulations and theories
◮ Put information into accessible database (SKY: Social Science

Knowledge Accumulation Initiative)
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Estimators: definition

Mk,τ,1 = E [E [Yi ,k+τ |Di ,k = 1,Yi ,k−1]

− E [Yi ,k+τ |Di ,k = 0,Yi ,k−1] |Di ,k = 1]

DIDk,τ,τ ′ = E
[
Yi ,k+τ − Yi ,k−τ ′ |Di ,k = 1

]

− E
[
Yi ,k+τ − Yi ,k−τ ′ |Di ,k = 0

]

DIDMk,τ,1,τ ′ = E
[
E
[
Yi ,k+τ − Yi ,k−τ ′ |Di ,k = 1,Yi ,k−1

]

− E
[
Yi ,k+τ − Yi ,k−τ ′ |Di ,k = 0,Yi ,k−1

]
|Di ,k = 1

]
.

Back



Bias: definition

B(Mk,τ,1) = E
[
E
[
Y 0
i ,k+τ |Di ,k = 1,Y 0

i ,k−1

]

− E
[
Y 0
i ,k+τ |Di ,k = 0,Yi ,k−1

]
|Di ,k = 1

]

B(DIDk,τ,τ ′) = E
[
Y 0
i ,k+τ − Y 0

i ,k−τ ′ |Di ,k = 1
]

− E
[
Y 0
i ,k+τ − Y 0

i ,k−τ ′ |Di ,k = 0
]

B(DIDMk,τ,1,τ ′) = E
[
E
[
Y 0
i ,k+τ − Y 0

i ,k−τ ′ |Di ,k = 1,Yi ,k−1

]

− E
[
Y 0
i ,k+τ − Yi ,k−τ ′ |Di ,k = 0,Yi ,k−1

]
|Di ,k = 1

]

Back



Consistency of Matching: sketch of proof

By linearity of conditional expectations:

E
[
Y 0
i ,t |D

∗

i ,k ,Y
0
k−1

]
= E

[
Y 0
i ,t

]
+ θ

Y 0
k+τ

,D∗

k

(
D∗

i ,k − E
[
D∗

i ,k

])

+ θ
Y 0
k+τ

,Y 0
k−1

(
Y 0
i ,k−1 − E

[
Y 0
i ,k−1

])

θ
Y 0
k+τ

,D∗

k

=

numk,τ
︷ ︸︸ ︷

σYk+τ ,D
∗

k
σ2
Yk−1

− σYk−1,D
∗

k
σYk−1,Yk+τ

σ2
D∗

k

σ2
Yk−1

− σ2
Yk−1,D

∗

k

B(Mk,τ,1) = θ
Y 0
k+τ

,D∗

k

E
[
E
[
D∗

i ,k |Di ,k = 1,Y 0
k−1

]
− E

[
D∗

i ,k |Di ,k = 0,Y 0
k−1

]

numk,τ = ρτ
(

γf σ2
[

σ2
µ + σ2

Uk−1

]

− ρθ,µσθσµρσ
2
Uk−1

)

︸ ︷︷ ︸

F (k)

+ ρθ,µσθσµσ
2
Uk−1

︸ ︷︷ ︸

G(k)

Back



Consistency of DID Matching: sketch of proof

B(DIDMk,τ,1,τ ′) = 0 ⇔ numk,τ − numk,−τ ′ = 0

numk,τ − numk,−τ ′ = B(τ, τ ′) + ρ2(k−τ ′)C (τ, τ ′)

B(τ, τ ′) = H(τ ′) + ρτ I

H(τ ′) = σµρθ,µσθρ
τ ′−1 σ2

1− ρ2

I =
σ2

1− ρ2
(γf σ2 − ρσµρθ,µσθ) + γf σ2σ2

µ

C (τ, τ ′) = J(τ ′) + ρτK (τ ′)

J(τ ′) = σµρθ,µσθρ
τ ′−1

(

σ2
U0

−
σ2

1− ρ2

)

K (τ ′) = γf σ2 −

(

σ2
U0

−
σ2

1− ρ2

)

σµρθ,µσθρ

Back



Consistency of DID Matching: sketch of proof (cont’d)

B(τ, f (τ)) = ρτL(τ)

L(τ) = ρσµρθ,µσθ
σ2

1− ρ2
(ρf (τ)−τ−2 − 1) + γf σ2

(
σ2

1− ρ2
+ σ2

µ

)

C (τ, f (τ)) = ρτ+2(f (τ)−1)M(τ)

M(τ) =

(

σ2
U0

−
σ2

1− ρ2

)

N(τ)

N(τ) = σµρθ,µσθρ(ρ
−(f (τ)+τ) − 1) + γf σ2

Back



Consistency of DID: sketch of proof

B(DIDk,τ,τ ′) = 0 ⇔ σ
Y 0
k+τ

,D∗

k

− σ
Y 0
k−τ ′

,D∗

k

= 0

σ
Y 0
k+τ

,D∗

k

− σ
Y 0
k−τ ′

,D∗

k

= P(τ, τ ′) + ρ2(k−τ ′)Q(τ, τ ′)

P(τ, τ ′) = γ(ρτ+1 − ρτ
′
−1)

σ2

1− ρ2
+ γf ρτσ2

Q(τ, τ ′) = γ

(

σ2
U0

−
σ2

1− ρ2

)

(ρτ+1ρ2(τ
′
−1) − ρτ

′
−1)

P(τ, f (τ)) = ρτ+1

(

γρ
σ2

1− ρ2
+ γf σ2 − γρf (τ)−τ−1 σ2

1− ρ2

)

Q(τ, f (τ)) = ρτ+1+2(f (τ)−1)γ

(

σ2
U0

−
σ2

1− ρ2

)(

1− ρ−f (τ)−τ+1
)

.
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Results of HIST
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Results of Ashenfelter and Card
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