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Observational Methods are unreliable

N= 100 N= 1000

» Reliable Observational
Methods would enable
causal inference at a low 3
cost
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Making Observational Methods reliable

Characterizing the distribution of the bias of Observational
Methods would make them more reliable
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My proposal: combining 3 steps

1. Derive general properties using stylized theoretical models

2. Derive quantitative properties using simulations of calibrated
models

3. Estimate the bias of Observational Methods from real data



An example:

DID Matching and JTPs

» DID Matching emerges as least biased method when
compared with RCTs

> Intuitive explanation: DID captures fixed effects, Matching
captures transitory shocks
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Why does DID Matching work?

1. Theoretical results

> Intuitive story is wrong

» Fallacy of alignment bias

» Symmetric DID undoes time varying selection bias
2. Simulations

» Fallacy of alignment bias is sizable

» Symmetric DID resists to failure of symmetry

3. Empirical results confirm predictions
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The model

Yi?t =0+ pi+ Ui
with Uit = pUj -1+ Vit
Dij =0 + 7Yk 1+ Vik
Dj:=1[t > k|1 [Dj > 0]
E [Yi?t‘D;k,ka Yik-1] linear
Corr(pi, 0i) = po,p

» Both permanent (when
po. 7 0) and transitory

(when v # 0 and p # 0)
confounders

» Both limited (when 7 = 0)
and full (when v = )
information

» Both self-selection in a JTP
and eligibility criteria



The estimators and their asymptotic biases
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The estimators and their asymptotic biases
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The estimators and their asymptotic biases
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Conditions for consistency

Definition (Consistency)

An estimator E ;. is consistent < B(Ey ) =0,
> Vk >3
> V7T >1
» For 7/ € [2...max{2, k — 1}] with either:

> V7!
» For 7/ = f(7)



Main theoretical result

Theorem (Consistency of M, DID and DIDM)
Vk >3,Vr>1, for7 € [2...max{2, k — 1}],
(i) B(Myk71)=0< pg=7"=0o0rpg,=p=0.
(i) B(DIDrr) =0 <
p=0ory=~"=0

or
0%/0: 13;2 andT’:T+1+::—5, with p=p+ 2 (1— 2).
(i) B(DIDMy +1.) =0 <
p97H:’)/f:00rp:
or
02 =% and 7 =7+ 1+ M with p* = p— f g2 20 "ﬁ i
Uo 1—p? Inp > PU;L%'
1—p
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The model

Y, =a+b

]

18+t+c 18+t
10 10

with Uit = pUi -1+ mvis1+ mavis o+ v

2
) + (0 + rd)E; + pj + Bit + Uy

o
Di = 71 — cik — E[Y2ITt ]

18 + k 18 + k\
Wl'thC,'7k:C,'—|-,3XE,'—<a+b 8+ +C< 8+ ) +(6+rkd)E;>

10 10

» = f: full information
» = [: limited information

» = b: Bayesian updating



Parameterization

RIP HIP
(MaCurdy, 1982) (Guvenen, 2007, 2009)

p 0.99 0.821
m -0.4 0
moy -0.1 0
o2 0.055 0.055
o? 0 0.022
o5 0 0.00038

0 -0.002




Results: RIP

Sym. DID Matching not on pre-treat. outcomes
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Matching on 1 pre-treat. outcome

- Matching on 3 pre-treat. outcomes

0.10
[y
0.10
)

0.00
0.00

Mean bias.
'
+
+
+
+

H

-0.10
-0.10

-020
-0.20

Date of self-selection in the JTP Date of self-selection in the JTP

(a) Full Info, Long Run  (b) Limited Info, Long Run

Sym. DID Matching not on pre-trea. utcomes
2 |[-a- Sym. DID Matcning on 1 pre-teat. outcome. e
S 7]|-2- sym. DID Matching on 3 pre-treat. outcomes bl Becerersenanaann a
- Watching on 1 pre-treat outcome e
[+ Matching on 3 pre-treat outcomes 44 - N s
R 8 |+ - + +
- £+
4 B = 4 * ¥ +
2 2| 2 e
S S
T T T T T T T r . T . T
s w0 s w3 s w0 s w3
Date ofsef-seiecton i the JTP Date of sef-selection n the JTP

(c) Full Info, Short Run  (d
Run

Limited Info, Short

~



Results: HIP
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Evidence on the bias of observational methods

» Within Study Comparisons
» Between Study Comparisons
» Within Study Sensitivity Analysis



Results of Within Study Comparisons for JTPs

Bias (% of the treatment effect)
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Meta-analysis of Within Study Comparisons for JTPs

Glazerman, Levy, and Myers (2003)

RESULTS SHOWING THE EFFECT OF NONEXPERIMENTAL APPROACH ON BIAS IN EARNINGS IMPACTS

Model Specification
3 4 5 6

1

o

4.467°°° (657) 4.657°°°(1.231)

-1.516°(705) -1476°* (675) -1.416°° (706)

Matching -1,268°° (794)  —807° 27°°° (799)
Regression x Matching 951 (1.484)
Difference-in- Differences 1,874  (763) 1596 (S16) (813) * (1.336)

mx I)nl]( rences-
2325 (1.455) 2.676°  (1.600)
erences-
in-Differences 1.
Selection correction 2.508° (1,248) 2,376 (1.305) 4619 (1,045) 2,441 (1,299)
Comparison group strategy
Geographic match
National data set
Control group from

9 (1477) 1,774 (1,347)
1°**(1,163) 3,072°* (1,

(973)
(1.062)

-673 (957)  -581  (1.160)
915  (1.043) 1668 (1.479)

another site 1762  (1.011) NA  -2]124°°  (995) -1.346 (2863)
Study dummies included No Yes No Yes No Yes

NOTE: Dependent variable is the absolute value of the bias in annual earnings. expressed in 1996 dollars. Standard errors are in parentheses. All
explanatory variables are dummy ables. Sample size is 69 bias estimate types.

*Significantly different from zero at the .10 level. **Significantly different from zero at the .05 level. ***Significantly different from zero at the .01
level, two-tailed test.




Between Study Analysis of JTPs (Example)

Card, Kluve, and Weber (2015)

Median Mean Program Effect on Prob. Emp. (x100)
Number Sample Percent Short Medium Longer
Est's. Size RCT's Term Term Term
(1) (2) (3) (4) (5) (6)
By Evaluation Design:
Experimental 166 1,471 100.0 4.4 PR 0.5
(28) (25) (15)
Non-experimental 691 16,000 0.0 0.9 6.0

11.0
(113) (118) (53)
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Conclusions so far

» The proposed approach seems to work

» Combining DID and Matching on pre-treatment outcomes is
not a great idea



To do for this paper

» Simulations with levels
> Re-analyze JTPA data
» Nickell bias?



Further research

1. Bias of OM for JTPs

» One prediction to be tested: controlling for more pre-treatment
outcomes could make things better
» Two empirical results to explain
» Conditioning for labor market transitions improves matching
» The bias of observational methods increases with time after
treatment
2. Bias of OM in other applications
» Collect more estimates of bias
» Within Study Comparisons using RCTs with imperfect
compliance (Chabé-Ferret et al, 2018)
> Test validity of pseudo-experiments
» Develop simulations and theories
» Put information into accessible database (SKY: Social Science
Knowledge Accumulation Initiative)
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Estimators: definition

Miz1 = E[E[Yktr|Dik =1, Yik-1]
— E[Yksr|Dik =0, Y k-1] |Dix = 1]
DIDy 770 = E [Yikir — Yik—r|Dik = 1]
—E [Yiksr — Yik—r|Dik = 0]
DIDMy +1,7 =E [E [Yiksr — Yik—r|Dik =1, Y 1]
— E [Yiktr = Yik—r|Dik =0, Yix-1] [Dix = 1].



Bias: definition

B(Mk,f,l):E[ [ :k+-r|le 1, Yk 1]
— E [YiirDik = 0, Yik-a] |Dik = 1]
B(DIDkr) =E [Ykir — Yik—w|Dik = 1]
—E [YP4r = Yok Dik =0
B(DIDMjr1,) = E [E [Y2% 7 = Yik o [Dik = 1, Yi1]

— E[Yir — Yik—r|Dik =0, Yix-1] [Dix = 1]



Consistency of Matching: sketch of proof

By linearity of conditional expectations:

o (Dix —E[Diy])
Yo (Yo —E[Y2 1))

E [Yi(,)t|D;k,k7 Y;?,l] =E [Y/(,)t] + 0Y°+
+ 9\/0

k+T7
numy -

2
OYi47D;0Y 1 — OY_1,D; 0 Y1, Yiyr

o D = 2 2 2
k+712"k —
D% 1 T TVi1,D;

B(Mi,r1) = Oyo_ p:E [E [Dfy|Dik =1, V4] — E[Df|Dik =0, Y]

f 2.2 2 2 2
numy - = pT (fy o |:0'M + O-kal] — :09#‘790#/)‘7%,1) —I—pe)WJe(Tu(TUF1
N——’

F(k) G(k)




Consistency of DID Matching: sketch of proof

B(DIDMy +1,) =0 < numy . —numy . =0

NUMg - —nNuMy . = B(r, 7-/) + pz(k—f')c(ﬂ T/)
B(r.7') = H(r') + "

o2

1—p

H(r') = oupopoep™ '

o
I = 1_7p2(7f02 — PPy 1Y) +7f0205

Clr,7) = J(+) + 07K (7')

2
’_ g
J(TI) = O'I.“OQ,HO'QPT 1 (O’%}O — ]_—p2)

2
g
K(T’) — ,Yfa-Z _ <J%/O — 71 — p2> G 1uPo, 0P



Consistency of DID Matching: sketch of proof (cont'd)

B(r,f(7)) = p"L(7)
L(7) = poyupo,uoo G (P72 — 1) + 4702 L + o,
PO T 2 1— 2 " %n

Clr. () = pm 2 D(r)

g

M) = (o, — 17 ) M)

N(r) = oupouoop(p”"F7) —1) +470?



Consistency of DID: sketch of proof

B(DID = o « — O .=
( kra') =0 Yir:Di Yy D; 0

! 2(k—71' !
oy op v o =P 7)+2Q(r )

2
’_ g

1—p
' 2 o’ 7+1 2(7—1) -1
Q(r, 7)) =~ T (P p -p )
+1 o f 2 f(r)—-m—1 o
P f = U - _ T)—T—
(. f(7)) =» (wl_pz +7'0" —p 1_p2>

2
Q(r, f(7)) = prHit2(f()-1), (0’%/ __9 ) <1 _ p—f(r)_7+1) '
0 1— ,02



Results of HIST

Bias of Matching and DID matching in HIST
200 == Best predictor Matching
== DID matching

== Coarse Matching

O == DID matching
0

== Pre-treatment earnings
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== DID matching

== | abor Force Transitions
-200 Matching

== DID matching

-400



Results of Ashenfelter and Card

Difference Trainees-Controls in Earnings

0 = All
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