De l'économétrie au machine learning, quelles conséquences pour l'évaluation des politiques publiques ?

Emmanuel Flachaire

Aix-Marseille Université, AMSE

Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

Big data and Machine Learning

Ex: Google index, spam, netflix, amazon, bank, cv, kamikazes, cancers ...

Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

《曰》《卽》《臣》《臣》

Ξ

Econometrics & Machine Learning

Introduction

- General principle
- Ridge and Lasso
- Random Forest, Boosting, Deep learning

Misspecification

- Detection of misspecification
- Interpretable machine learning

3 Causal inference

- Average treatment effects
- Detection and analysis of heterogeneity

<回ト < 三ト < 三ト

General Principle: optimization problem

Find the solution \widehat{m} to the optimization problem:

$$\underset{m}{\mathsf{Minimize}} \sum_{i=1}^{n} \mathcal{L}(y_i, m(X_i)) \quad \text{subject to} \quad \|m\|_{\ell_q} \leq t \qquad (1)$$

which can be rewritten in Lagrangian form, for some $\lambda \geq 0$:

$$\underset{m}{\text{Minimize}} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, m(X_i))}_{\text{loss function}} + \underbrace{\lambda \|m\|_{\ell_q}}_{\text{penalization}}$$
(2)

• The goal is to minimize a loss function under constraint

• It is usually done by numerical optimization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General Principle: resolution by numerical optimization

Gradient Descent

(Source: Watt et al., 2016)

Algorithm: Gradient descent

Input: differentiable function g, fixed step length α , initial point x^0 Repeat until stopping condition is met: $w^k = w^{k-1} - \alpha g'(w^{k-1})$

Linear regression

Let us consider:

- Euclidian distance: $\mathcal{L}(y_i, m(X_i)) = (y_i m(X_i))^2$
- *m* is a linear function of parameters: $y_i \approx X_i \beta$ with $\beta \in R^p$
- no penalization: $\lambda = 0$

Thus, we have:

$$\underset{\beta}{\mathsf{Minimize}} \sum_{i=1}^{n} (y_i - X_i \beta)^2$$

It is the minimization of the SSR in a linear regression $ightarrow \widehat{oldsymbol{eta}}_{OLS}$

イロト イヨト イヨト イヨト

Machine Learning: solve the optimization problem

$$\underset{m}{\text{Minimize}} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, m(X_i))}_{\text{loss function}} + \underbrace{\lambda \|m\|_{\ell_q}}_{\text{penalization}}$$

• Choice of the loss function:

- $\mathcal{L} \rightarrow$ conditional mean, quantiles, classification
- m
 ightarrow linear, splines, tree-based models, neural networks
- Choice of the penalization:

• $\ell_q \rightarrow$ lasso, ridge

• $\lambda~\rightarrow$ over-fitting, under-fitting, cross validation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

San

Over-fitting

A model with high flexibility may fit perfectly observations used for estimation, but very poorly new observations

 \rightarrow penalization: put a price to pay for having a more flexible model

Emmanuel Flachaire Confére

Conférence AFSE DG Trésor, 2021

Under-fitting

If we put a huge cost for a more complex model, $\lambda=\infty,$ we obtain a linear regression model

 \rightarrow if the cost is too large: low variance, but high bias

Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

Do not train and evaluate the model with the same sample

Underfitting: the model performs poorly on training and test samples Overfitting: performs well on training sample, but generalizes poorly on test sample

 \rightarrow Control overfitting with MSE computed out-sample by CV

Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sar

$$\underset{\beta}{\mathsf{Minimize}} \quad \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \sum_{j=2}^{p} |\beta_j|^q$$

It is equivalent to minimize SSR subject to $\sum_{j=2}^p |\beta_j|^q \leq c$

- The constraint restricts the magnitude of the coefficients
- It shrinks the coefficients towards zero as $c\searrow$ (or $\lambda\nearrow$)
- Add some bias if it leads to a substantial decrease in variance
- q = 2: Ridge, $\hat{\beta} = (X^{\top}X + \lambda \mathbb{I}_n)^{-1}X^{\top}y$ is defined with $p \gg n$
- q = 1: Lasso sets some coef exactly to 0, variable selection

 \rightarrow High-dimensional problems ($p \gg n$)

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

San

Random Forest, Boosting, Deep learning

$$\underset{m}{\text{Minimize}} \quad \sum_{i=1}^{n} (y_i - m(X_i))^2 + \lambda \int m''(x)^2 dx$$

It is equivalent to minimize SSR subject to $\int m''(x)^2 dx \leq c$

- A fully nonparametric model: $y \approx m(X_1, \dots, X_p)$
- The constraint restricts the flexibility of m
- Choice of m: Random forest, boosting or deep learning
- Similar to nonparametric econometrics (splines)
- Appropriate with many covariates (no curse of dimensionality)

 \rightarrow Complex functional form

Pros:

- High-dimensional problems
- Complex functional forms

However,

- Black-box models
- Prediction is not causation¹

¹Kleinberg et al. (2015) Prediction policy problems, Athey (2017) Beyond prediction: Using big data for policy problems

Misspecification

Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

ML models outperform parametric econometric models

- Many results report that ML outperform parametric models in terms of predictive performance
- Boston housing dataset:²

$\widehat{\mathcal{R}}^{10-CV}$	OLS	$OLS_{x^2x^3}$ int	R.Forest	Boosting
MSE	23.938	24.079	10.008	9.729

- ML models show impressive improvement in prediction error
- ML models are known to capture complex functional forms
- It suggests that the parametric models miss important nonlinear and/or interaction effects

²14 variables (2 dummies), 78 pairwise interactions, 506 øbservations: ► = ∽ < ⊂ Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

An econometric model for interpretable Machine Learning

Partially linear model:³

$$y = g_1(X_1) + \ldots + g_p(X_p) + Z\gamma + \varepsilon$$

with Z a matrix of pairwise interactions $Z = (X_1X_2, \ldots, X_{q-1}X_q)$. The marginal effect is:

$$rac{\partial y}{\partial X_{j}}=g_{j}^{\prime}\left(X_{j}
ight)+c$$

where c is a constant term which depends on the other covariates.

- Combine non-linearity in X_j and linear pairwise interactions
- The linearity assumption on interaction effects represents the price to pay to keep the model interpretable.
- Estimation: GAM+variable selection (Lasso, Autometrics)

³Flachaire, Hacheme, Hué, Laurent (2021) Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

Parametric models can perform as well as ML models

Boston housing dataset:

$\widehat{\mathcal{R}}^{10-CV}$	OLS	R.Forest	Boosting	GAMLA
MSE	23.938	10.008	9.729	9.594

- ML models outperform standard parametric model ... which are not well-specified!
- ML methods can help to detect and correct misspecification in parametric regression

(日)

DQA

Causal inference

Emmanuel Flachaire Conférence AFSE DG Trésor, 2021

Treatment effects: high-dimensions

Partially linear model

$$y = D\tau + g(X) + \varepsilon$$

- g(X) approx linearly with many controls (2-ways interactions)
- au variable of interest, $g(X) = Z\gamma$, with Z = [X, X:X]
- Post-Lasso: inference is valid if perfect selection achieved only
- Concern: wrong exclusion of variables (omitted variable bias)
- Double Lasso: least squares after double selection⁴
 - 1 Lasso of y on Z: select variables important to predict y
 - 2 Lasso of D on Z: select variables correlated with the treatment
 - OLS of y on D and the union of the selected variables

\rightarrow valid post-selection inference in high-dimensions

⁴Belloni, Chernozhukov and Hansen (2014): uniformly valid confidence set for τ despite imperfect model selection, and full efficiency for setimating $\pi \equiv -9$ Heterogeneous treatment effects: high-dimensions

Heterogeneity

$$y = D\tau(X) + g(X) + \varepsilon$$

- au(X) is a parametric function of X: e.g. $au(X) = X\beta$
- $g(X) = Z\gamma$, approximated linearly with 2-ways interactions
- Double Lasso: least squares after double selection

1 Lasso of y on Z: select variables important to predict y

2 Lasso of each component of DX on the other regressors

OLS of y on D and the union of the selected variables

• Bach, Chernozhukov and Spindler (2021) Closing the U.S. gender wage gap requires understanding its heterogeneity

 \rightarrow assess heterogeneity with many determinants

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

San

Heterogeneous treatment effects: fully nonparametric

Interactive model

$$y = m(D, X) + \varepsilon$$
$$d = h(X) + \eta$$

- ATE: parameter of interest, m(.) and h(.): nuisance functions
- Double Machine Learning:⁵
 - 1 Neyman orthogonal condition (double residuals, FWL)
 - 2 Cross-fitting: ATE and m, h estimated from \neq samples
 - 3 Doubly robust: AIPW robust to misspecification of m or h

AIPW estimator based on ML estimation of m and h

\rightarrow ATE estimation and inference with good properties 6

• No detection and analysis of heterogeneity

⁵Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, Robins (2018) $\sqrt[6]{n}$ -consistent and asymp Normal even if nuisance functions $n^{\frac{1}{2}}$ -consistent Souce

Detection and analysis of heterogeneity

Generic Machine Learning:⁷

- Do not attempt to get valid estimation and inference on the CATE itself, but on features of the CATE
- Obtain ML proxy predictor of CATE (auxiliary set) and target features of CATE based on this proxy predictor (main set)

Main interests:

- Test if there is evidence of heterogeneity (BLP)
- ATE for the 20% most (least) affected individuals? (GATES)
- Which covariates are associated to TE heterogeneity? (CLAN)

 \rightarrow valid estimation and inference on $\mathit{features}$ of CATE

⁷Chernozhukov, Demirer, Duflo and Fernàndez-Val (2020) → < = > < = > = ∽ < <

Detection and analysis of heterogeneity

Causal Random Forest:⁸

- Random Forest is modified to estimate the CATE directly
- Grow a tree and evaluate its performance based on TE heterogeneity rather than predictive accuracy
- The idea is to find leaves where the treatment effect is constant but different from other leaves
- Split criterion: maximize heterogeneity in TE between leaves
- Honest tree: build tree and estimate CATE from \neq samples

 \rightarrow valid estimation and confidence intervals for CATE⁹

⁸Wager and Athey (2018), Athey, Tibshirani and Wager (2019) ⁹RF predictions are asymp unbiased and Gaussian, but cv⊴rates≣below∉ √n ≣ ∽૧૧ ∾

Causal Machine Learning: A brief roadmap

Underlying assumptions

- Standard hypotheses: SUTVA, CIA and CSC
- Common support condition (CSC): $0 < P(d_i = 1 | X_i = x) < 1$
 - ML estimation often provides better predictions
 - Adding covariates makes matching more difficult

Strittmatter and Wunsch (2021) The gender pay gap revisited with big data: Do methodological choices matter?

- Trimming in experiments vs. decomposition methods
 - \rightarrow Beware of CSC when moving away from RCT framework

A E F A E F

Conclusion

The impact of ML for public policy evaluation:

- Dealing with many covariates $(p \gg n)$
- Relying less on a priori specification
- Take care of heterogeneity
- However, do not forget underlying assumptions! (CSC)

Technical literature, where implementation becomes easier

- Double Lasso: R package hdm
- Double Machine Learning: R package DoubleML
- Generalized Random Forest: R package grf
- Generic Machine Learning: R package GenericML

An effervescent empirical and theoretical literature

イロト イヨト イヨト

Selected references

- Athey (2017) Beyond prediction: Using big data for policy problems, Science
- Athey (2018) The impact of machine learning on economics
- Athey, Tibshirani and Wager (2019) Generalized random forest, Ann. Statis.
- Bach, Chernozhukov and Spindler (2021) Closing the U.S. gender wage gap requires understanding its heterogeneity, arXiv:1812.04345
- Belloni, Chernozhukov and Hansen (2014) Inference on treatment effects after selection amongst high-dimensional controls, REStud
- Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and Robins (2018) Double/debiased ML for treatment and structural parameters. Econometrics J.
- Chernozhukov, Demirer, Duflo and Fernàndez-Val (2020) Generic ML inference on heterogenous treatment effects in randomized experiments, arXiv:1712.04802
- Gaillac and L'Hour (2020) Machine Learning for Econometrics, Lecture notes
- Kleinberg, Ludwig, Mullainathan and Obermeyer (2015) Prediction Policy Problems, AER P&P
- L'Hour (2020), L'économétrie en grande dimension. INSEE M2020-01
- Strittmatter (2020) What is the value added by using causal machine learning methods in a welfare experiment evaluation.
- Strittmatter and Wunsch (2021) The gender pay gap revisited with big data: Do methodological choices matter? arXiv:2102.09207
- Wager and Athey (2018) Estimation and inference of heterogeneous treatment effects using random forests. JASA