Carbon Contract for Differences for the development of low-carbon hydrogen in Europe

Corinne CHATON & Coline METTA-VERSMESSEN

15th of December 2021

Introduction •00000	II- Analytical model	III- CCfDs determination	Conclusion 00	Appendices 000000000
Table of	contents			

- 2 Analytical model
- 3 Determination of French and German CCfDs

4 Conclusion

5 Appendices

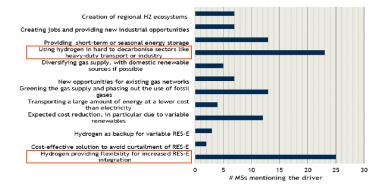
2/37

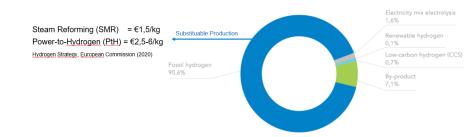
- ∢ ⊒ →

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
00000				

Context

Low-carbon hydrogen, an energy vector for decarbonization



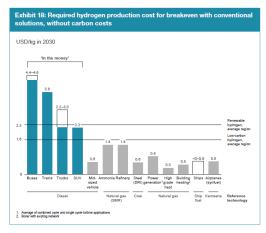

FIGURE – The main benefits expected by Member States from the development of low-carbon hydrogen, FCH2JU (2020)

イロト イポト イヨト イヨト

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000				

Context

A product in need of competitiveness in the face of steam reforming production

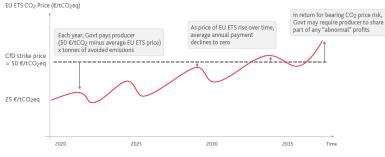

$$\label{eq:FIGURE} \begin{split} \mathrm{FIGURE} &- \mathrm{Distribution \ of} \ H_2 \ \mathrm{production} \ \mathrm{by \ technology \ in} \ \mathrm{Europe \ in} \\ & 2018, \ \mathrm{Hydrogen \ Europe \ (2020)} \end{split}$$

イロト イボト イヨト イヨト

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000				

Context

The need for an effective carbon price to make up for the competitiveness gap



 $\begin{array}{l} \mbox{Figure} - \mbox{Low-carbon } H_2 \\ \mbox{costs needed to achieve} \\ \mbox{competitiveness without} \\ \mbox{carbon price, Hydrogen} \\ \mbox{Insights (2021)} \end{array}$

イロト イポト イヨト イヨト

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000				

Literature The CCfD, a tool first described by Helm and Hepburn, 2005

Source: O. Sartor, IDDRI.

FIGURE – Example of how CCfD works to support the development of low-carbon investments

イロト イボト イヨト イヨト

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000				

Literature

CCfD to support the scaling up of innovative low-carbon project

- Time consistency (Chiappinelli & Neuhoff, 2020)
- Lowering the required CO₂ price (Richstein & Neuhoff, 2020)
- Closing the funding gap (Richstein 2017)
- Consistency with political framework (Sartor & Bataille, 2020)

research question

How to design the CCfD to scale up low-carbon hydrogen production ?

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	●0000000		00	000000000
Table of	contents			

3 Determination of French and German CCfDs

4 Conclusion

5 Appendices

8/37

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
	0000000			

1- General framework : Price competition

Let *n* firms produce a homogeneous good H_2

The firm *i* profit

$$\Pi_i(p_{h_i}, p_{h_{-i}}) = (p_{h_i} - c_i) D_i(p_{h_i}, p_{h_{-i}}), \qquad (1)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

where $c_i = c_e$ (resp. $c_i = c_s$) the marginal cost of electrolysis (resp. of Steam reforming).

Nash equilibrium

As long as $c_s < c_e$, $p_h^{\star} = c_s$ and electrolysis H₂ is not cost-effective.

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
	0000000			

2- marginal costs specification

Let $i = \{e, v\}$, p_i be the price of energy used by technology *i*, rho_i be the yield of *i* and *sigma* be the market price of CO₂..

Marginal cost of H₂ by steam reforming

$$c_s(\sigma, p_g) = p_g \rho_s + e_s \sigma.$$

Marginal cost of H_2 by electrolysis

$$c_e(\sigma, p_g) = p_e(\sigma, p_g)\rho_e, \qquad (3)$$

2

where $p_0 \geq 0$, $p_1 > 0$, $p_2 < 0$ et $p_3 \geq 0$:

$$p_e(\sigma, p_g) = p_0 + p_1 \sigma + p_2 \sigma^2 + p_3 p_g.$$
 (4)

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	0000000	0000000000		000000000

2- marginal costs specification With State Aids

Indirect carbon cost offset

A subsidy χ is possible for H_2 up to 75% of the indirect cost of CO_2. With $\chi[0,1],~c_e$ can be rewritten as :

$$c_e^{\chi}(\sigma) = c_e(\sigma) - \chi(c_e(\sigma) - c_e(0)).$$
(5)

Free allocations of emission permits

If we consider the free allocations as unit subsidies reducing the marginal cost of CO₂ emissions for producers by steam reforming, denoted $a \in [0; e_s]$, then c_s is rewritten

$$c_s^a(\sigma, p_g) = p_g \rho_s + (e_s - a)\sigma.$$
(6)

< /□ > < □ >

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
	00000000			

3- CCfD strike and payment determination

Strike price and threshold gas price

Definition of the contract strike

The strike is defined by the solution(s) in sigma (with sigma $\in \mathbb{R}$) of the quadratic equation of the marginal costs difference :

$$\gamma^{\chi,a}(\sigma) = c_e^{\chi}(\sigma) - c_s^{a}(\sigma). \tag{7}$$

Definition of the threshold gas price

The gas price that cancels the discriminant of the polynomial $\bar{p}_{g}^{\chi,a}=$

$$-\frac{(e_s-a)^2-2p_1(e_s-a)\rho_e(1-\chi)}{4p_2\rho_e(\rho_g-p_3\rho_e)(1-\chi)}+\frac{\rho_e^2(p_1^2(1-\chi)-4p_0p_2)}{4p_2\rho_e(\rho_g-p_3\rho_e)}.$$
(8)

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
	00000000			

3- CCfD strike and payment determination

CCfD efficiency condition

Proposition

- If $p_g > \bar{p}_g^{\chi,a}$ then for all σ , $\gamma^{\chi,a}(\sigma, p_g) < 0$ i.e. there is no need to set up a CCfD.
- **2** If $p_g = \bar{p}_g^{\chi,a}$, then the equation 7 has a unique solution, noted $\bar{\sigma}^{\chi,a}$. As a result, the CCfD is inefficient in this case.
- If $p_g < \bar{p}_g^{\chi,a}$ then $\exists!(\bar{\sigma}_m^{\chi,a}, \bar{\sigma}_M^{\chi,a})$ tq $\forall \sigma \in [\bar{\sigma}_m^{\chi,a}, \bar{\sigma}_M^{\chi,a}], c_e > c_v$. Therefore, a CCfD could make low-carbon hydrogen competitive.

Theorem

The CCfD will be implemented only if the expected gas price is below the threshold $\bar{p}_{g}^{\chi,a}$ and the couple $(\bar{\sigma}_{m}^{\chi,a}, \bar{\sigma}_{M}^{\chi,a})$ is the strike.

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
	00000000			

3- CCfD strike and payment determination

The strike analytical expression

The analytical expression of the couple $(\bar{\sigma}_m^{\chi,a}, \bar{\sigma}_M^{\chi,a})$ is :

$$\bar{\sigma}_{m}^{\chi,a} = \bar{\sigma}^{\chi,a} - \frac{\Gamma_{1}}{\Gamma_{2}}, \qquad (9)$$
$$\bar{\sigma}_{M}^{\chi,a} = \bar{\sigma}^{\chi,a} + \frac{\Gamma_{1}}{\Gamma_{2}}, \qquad (10)$$

where $\Gamma_1 =$

$$\sqrt{(e_s - a - p_1 \rho_e (1 - \chi))^2 + (4p_2 \rho_e (-p_0 \rho_e + p_g (\rho_g - p_3 \rho_e)))(1 - \chi)}$$
(11)

$$\Gamma_2 = -2p_2\rho_e(1-\chi).$$
 (12)

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
	0000000			

3- CCfD strike and payment determination CCfD payment γ

The CCfD payment formula

 $\gamma^{\chi}(\sigma)$ is the difference between the marginal costs i.e.

$$\gamma^{\chi,a}(\sigma) = c_e^{\chi}(\sigma) - c_s^{a}(\sigma).$$
(13)

Theorem

If the reference gas price is less than $\bar{p}_g^{\chi,a}$, then the contract payment noted $\bar{\gamma}^{\chi,a}$, is

$$\Gamma_1(\bar{\sigma}_M - \sigma) - \frac{\Gamma_2}{2}(\bar{\sigma}_M - \sigma)^2 = -\Gamma_1(\bar{\sigma}_m - \sigma) - \frac{\Gamma_2}{2}(\bar{\sigma}_m - \sigma)^2$$
(14)

where Γ_1 and Γ_2 are defined by (11) and (12).

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	0000000	•0000000000	00	000000000
Table of	contents			

2 Analytical model

3 Determination of French and German CCfDs

4 Conclusion

5 Appendices

/□ ▶ 《 □ ▶

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	00000000	○●○○○○○○○○	00	000000000

1- Data : Electricity prices

$$p_e = p_1 \sigma + p_2 \sigma^2 + p_3 p_g + \epsilon, \qquad (15)$$

< 同 > < 回 > < 回 >

Explanatory var. P(> t)	Param.	Estimation	SD	t-value
p_g	<i>p</i> 3	1,22	0,18	2e-7
σ	p_1	3,16	0,78	0,000321
σ^2	<i>p</i> ₂	-0,10	0,03	0,008178
pg	<i>p</i> 3	1,00	0,12	2,7e-9
σ	p_1	3,16	0,52	8,76e-7
σ^2	<i>p</i> ₂	-0,08	0,02	0,000285

TABLE - Linear regression results for the French (top) and German (bottom) cases. Data : CRE, Observatoire des Marchés, 2010-2019

Introduction 000000	II- Analytical model 00000000	III- CCfDs determination	Conclusion	Appendices 000000000

1- Data : other parameters

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \hline \rho_g & e_v & \rho_e & \mathsf{a} & \chi \\ \hline 80\% & \mathsf{0,328gCO_2/MWh} & \mathsf{50\%} & \mathsf{0} & \mathsf{0} \end{array}$$

 TABLE – Reference values of the model parameters.

/∄ ► < ∃ ►

Introduction 000000	II- Analytical model	III- CCfDs determination	Conclusion	Appendices 000000000

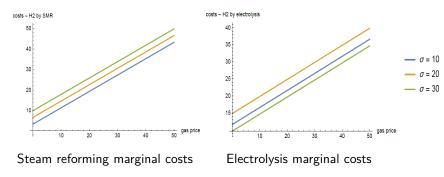
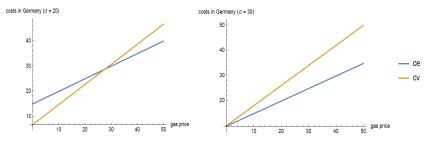
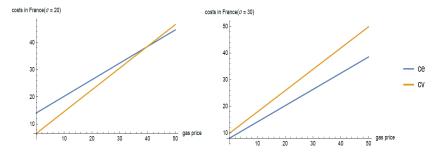



FIGURE – Marginal costs of hydrogen (€/MWh) by both technologies as a function of the gas (€/MWh) and carbon (€/t) prices.


Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	0000000	0000●000000	00	

Costs for a carbon price of $20 \notin t$. Costs for a carbon price of $30 \notin t$.

FIGURE – Costs of both technologies in Germany (€/MWh). (blue = electrolysis, yellow = steam reforming)

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
		0000000000		

Costs for a carbon price of $20 \notin t$. Costs for a carbon price of $30 \notin t$.

FIGURE - Costs of both technologies in France (€/MWh). (blue = electrolysis, yellow = steam reforming)

Introduction 000000	II- Analytical model	III- CCfDs determination	Conclusion	Appendices

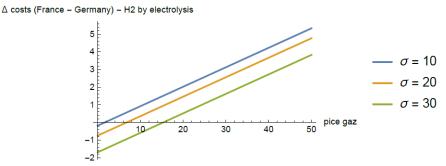


FIGURE – Difference in marginal costs of hydrogen production by electrolysis between France and Germany (€/MWh).

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	00000000	0000000●000	00	

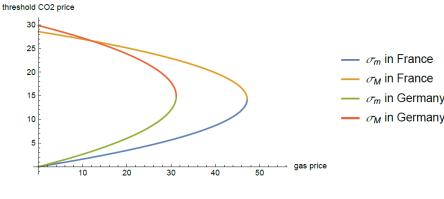
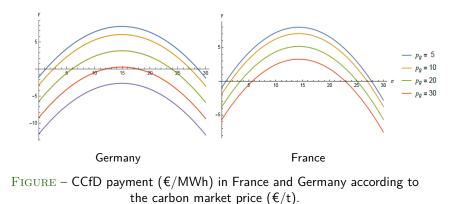
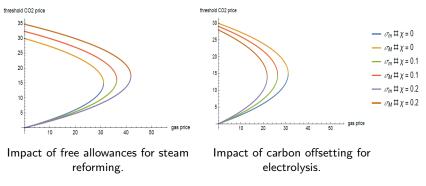
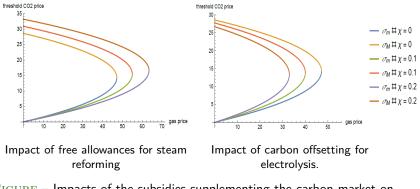




FIGURE – CCfD strikes (\notin /t) in France and Germany as a function of gaz price (\notin /MWh).

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	00000000	00000000●00	00	000000000



Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	00000000	00000000●0	00	000000000

$$\label{eq:FIGURE-Impacts} \begin{split} \mathrm{FIGURE-Impacts} \ of \ the \ subsidies \ supplementing \ the \ carbon \ market \ on \ the \ CCfD \ strike \ in \ Germany \ ({\mbox{\sc tr}}/t). \end{split}$$

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000		000000000●	00	000000000

$$\label{eq:FIGURE-Impacts} \begin{split} \mathrm{FIGURE-Impacts} \ \text{of the subsidies supplementing the carbon market on} \\ \ \text{the CCfD strike in France} \ ({\mbox{\sc f}}/t). \end{split}$$

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	00000000		●○	000000000
Table of	contents			

2 Analytical model

3 Determination of French and German CCfDs

4 Conclusion

5 Appendices

Introduction 000000	II- Analytical model	III- CCfDs determination	Conclusion ⊙●	Appendices 000000000

Conclusion

Results : An initial model on CCFDs and H_2

- The strike can represent a set of prices;
- There is a threshold gas price (relative to other parameters) above which the CCfD is ineffective;
- The CCfD should be characterized according to the region's electricity fleet due to the impact of the carbon price;
- The additional aid to the EU-ETS impacts the characterization of CCfDs.

Further research

Multi-period model to consider the whole business plan (investments, uncertainty, risk coverage); study of allocation methods...

Introduction 000000	II- Analytical model	III- CCfDs determination	Conclusion 00	Appendices •00000000
Table of	contents			

- Analytical model
- 3 Determination of French and German CCfDs

4 Conclusion

⇒ →

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
000000	00000000		00	○●○○○○○○○
Appendic	~es			

- A. Econometric study for the electricity price function in France and Germany
- B. Determination of CCfD in Europe and limitations of the results

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
				00000000

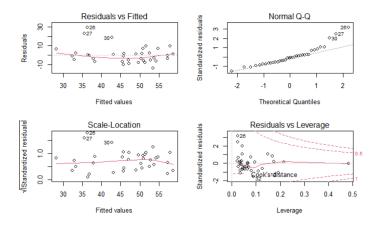
A.1- Selection of variables (French case)

Explanatory var.	Estimation	SD	t-value	P(> t)
p_0	13,723	9,11	1,51	0,14
p_g	0,99	0,32	2,88	0,01
σ	2,25	1,37	1,64	0,11
σ^2	-0,06	0,05	-1,22	0,23
pg	1,21	0,25	4,76	3,71e-05
σ	3,57	1,07	3,32	0,00219
σ^2	-0,11	0,04	-2,52	0,01692

TABLE – Results of the linear regression for the French case with constant (top) and without constant (bottom).

Introduction 000000	II- Analytical model	III- CCfDs determination	Conclusion 00	Appendices 000●00000

A.2- Residue test


test	France	Germany
Shapiro-Wilk	p-v = 0.001	p-v = 0.77
Breusch-Pagan	0.59	p-v = 0.39
Skewness	T=1.40; $p-v = 0.002$	T = 0.16; p-v = 0.67
Kurtosis	T = 5.10; p-v = 0.01	T= 3.65; p-v = 0.32

 $\label{eq:TABLE} TABLE- \mbox{Results of the residue tests for the French and German cases,} with the complete database.$

伺下 イヨト イヨト

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
				000000000

A.2- Residue test (French case)

Introduction 000000	II- Analytical model	III- CCfDs determination	Conclusion 00	Appendices 00000●000

A.2- Residue test

test	France	Germany
Shapiro-Wilk	p-v = 0.19	p-v = 0.66
Breusch-Pagan	0.75	p-v = 0.29
Skewness	T = 0.83; p-v = 0.04	T = -0.48; p-v = 0.21
Kurtosis	T = 4.07; p-v = 0.08	T=2.95; p-v = 0.94

 $\label{eq:TABLE} TABLE- \mbox{Residue test results for the French and German cases, without winter 2016-2017.}$

• • = • • = •

Introduction 000000	II- Analytical model 00000000	III- CCfDs determination	Conclusion	Appendices 0000000000

B.1- Estimation of the parameters

	France	Europe
p_0	35.266	31.286
p_1	0.5361	0.8343
<i>p</i> ₂	-0.0004	-0.0026

TABLE – Reference values of electricity price parameters (€/MWh) in Europe and France, with $p_e(\sigma) = p_2\sigma^2 + p_1\sigma + p_0$.

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
				000000000

B.2- Strike and payment for the European case

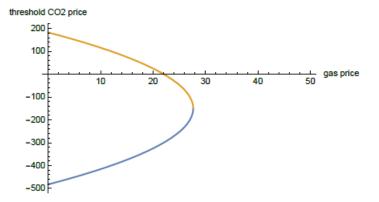


FIGURE – CCfD strike in Europe.

Introduction	II- Analytical model	III- CCfDs determination	Conclusion	Appendices
				00000000

B.2- Strike and payment for the European case

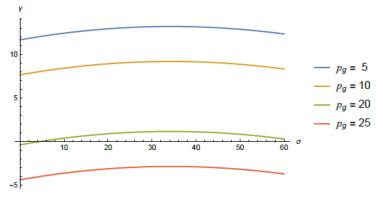


FIGURE – Payment of CCfD in Europe.